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SUMMARY

Tensile strengths of as-received HPZ fiber and those surface coated with BN, BN/SiC, and BN/Si3N 4 have been

determined at room temperature using a two-parameter Weibull distribution. Nominally -0.4 [xrn BN and 0.2 larnSiC

or Si3N 4 coatings were deposited on the fibers by chemical vapor deposition using a continuous reactor. The average
tensile strength of uncoated HPZ fiber was 2.0-&-_0.56GPa (290-!-_81ksi) with a Weibull modulus of 4.1. For the BN coated

fibers, the average strength and the Weibull modulus increased to 2.39-&-_0.44GPa (346+64 ksi) and 6.5, respectively. The
HPZ/BN/SiC fibers showed an average strength of 2.0-L-_0.32GPa (290-&-_47ksi) and Weibull modulus of 7.3. Average

strength of the fibers having a dual BN/Si3N 4 surface coating degraded to 1.15+0.26 GPa (166+38 ksi) with a Weibull
modulus of 5.3. The chemical composition and thicknessof the fiber coatings were determined using scanning Auger

analysis. Microstructural analysis of the fibers and the coatings was carried out by scanning electron microscopy and
transmission electron microscopy. A microporous silica-rich layer-200 nm thick is present on the as-received HPZ fiber

surface. The BN coatings on the fibers are amorphous to partly turbostratic and contaminated with carbon and oxygen.

Silicon carbide coating was crystalline whereas the silicon nitride coating was amorphous. The silicon carbide and silicon

nitride coatings are nonstoichiometric, nonuniform, and granular. Within a fiber tow, the fibers on the outside had thicker

and more granular coatings than those on the inside.

1. INTRODUCTION

The HPZ ceramic fiber is an inorganic silicon carbonitride fiber manufactured from hydridopolysilazane polymer

via a pyrolytic process by Dow Coming Corporation. It has an oval cross section and is amorphous with a typical

elemental composition of 57%Si, 28%N, 10%C, and 4%0. The thermal expansion coefficient of HPZ fiber is

-3x10-6/°C (ref. 1 ). It has a desirable combination of tensile strength, elastic modulus, density, and electrical properties

and retention of these properties at temperatures up to -1400 °C (ref. 1), making it suitable for a variety of aerospace

applications. It is intended as a reinforcement in high performance composites with ceramic, metal and polymer matrices.
The HPZ fiber surface is microporous and extremely reactive when in contact with aluminosilicate glass-ceramic

matrices at high temperatures. According to Brennan (ref. 2), diffusion of matrix elements such as Ba, Mg, Ai, Si, and

O through this porous surface layer occurs very rapidly, resulting in crystallization of the underlying HPZ fiber to silicon

oxynitride, Si2N20. The HPZ fiber surface needs to be protected with appropriate ceramic coating(s) in order to alleviate
chemical reactions with ceramic matrices during composite processing and use and also, to provide a weak fiber-matrix

interface for toughened composites.

The primary objective of the present study was to investigate the effect of CVD ceramic surface coatings on the

strength of the HPZ fiber. This provides a data base for planned work directed at incorporating these coated fibers as
reinforcement in celsian matrix composites. Another objective was to carry out microstructural and chemical analyses

of the fiber and the coatings. Room temperature tensile strengths of the as-received HPZ fibers and those coated with



BN,BN/SiC,andBN/Si3N4weremeasuredandtheWeibullstatisticalparametersdeterminedforeachtypeoffiber.
Elementalcompositionsandthicknessof thefibercoatingsweredeterminedby scanningAugeranalysis.The
microstructuralanalysesof thefibersandthecoatingsweredonebyscanningelectronmicroscopy(SEM)and
transmissionelectronmicroscopy(TEM).

2. MATERIALSANDEXPERIMENTALPROCEDURES

ThefiberusedinthepresentstudywastheX9-6371HPZceramicfiber,lotnumber031860,having1000denierand
nominally500filaments/towandsuppliedbyDowComingCorporation.Thepolyvinylalcohol(PVA)sizingonthe
fiberswasremovedeitherbydippingthefiberbundleinboilingwaterforseveralminutesorinabunsenburnerflame.
Singlefilamentswerecarefullyseparatedfromthefibertowfortesting.

All thecoatingsonthefiberswereappliedbyanoutsidevendorusingacontinuousCVDreactor.TheBNcoating
wasdepositedat-1000°Cutilizingaproprietaryprecursorandwasamorphoustopartlyturbostraticinnature.A thin
overcoatingofSiCorSi3N4wasalsoappliedbyCVDtotheBN-coatedfibers.Thenominalcoatingthicknesseswere
0.4_tmforBNand0.2_tmforSiCorSi3N4.

2.1ElectronMicroscopy

SurfacesoftheuncoatedandcoatedlooseHPZfiberswereexaminedusingscanningelectronmicroscopy(SEM).
Forcross-sectionalanalysis,fibersweremountedinahightemperatureepoxyandpolishedbeforeexamination.SEM
wasperformedusingaJEOLJSM6100operatingat15keV.Fibercross-sectionalthinfoilsfortransmissionelectron
microscopy(TEM)werepreparedusingaproceduredevelopedforceramicfiberswhichinvolvesepoxypotting,slicing,
polishing,dimplegrinding,andArionbeammilling.A thincarboncoatingwasevaporatedontothethinfoilsandthe
SEMspecimensforelectricalconductivitypriortoanalysis.ThethinfoilswereexaminedinaPhilipsEM400Toperating
at 120keV.X-rayelementalanalysesontheTEMwereacquiredusinga Kevexthinwindowenergydispersive
spectrometer(EDS)andanalyzer.

2.2.ScanningAugerAnalysis

Theelementalcompositionsofthefibernearthesurfaceandofthefibersurfacecoatingswereanalyzedwitha
scanningAugermicroprobe(FisonsModel31OF).Thefibersforthisanalysisweremountedbypressingintoindiumfoil
tominimizeelectricalchargingduringanalysis.Depthprofilingwasperformedbysequentialion-beamsputteringand
Augeranalysis.TheionetchingwasdonewithanAr+beamof3kVacceleratingvoltageandbeamcurrentof420nA
andrasteredover~l mm2areaonthespecimen.Thebeamwasoriented48°tothespecimennormalandwasoblique
tothefiberaxis.TheetchrateinTa205undertheseconditionswas0.41nm/s.

AESanalysiswasperformedwiththesamplenormal60°totheelectronbeamandparalleltotheanalyzeraxis.The
beamwasrasteredovera1btm 2 area at 100 kX during analysis and centered on the fiber. The beam voltage was 1.5 kV

and the beam current was -5.5 nA. Spectra were taken in integral ( as opposed to derivative) form, and depth profiles

were created by plotting peak areas against ion etch time. The atomic concentrations were calculated by dividing the peak

areas by sensitivity factors derived from spectra of several standard materials containing that element, then scaling the

results to total 100 percent. The sensitivity factors used for each element should not be trusted to better than +20 percent.

The depth scale is from the Ta205 calibration and has not been adjusted for the actual etch rate of the material. Only the
fibers with smooth surface coating, rather than those having thick and rough coating morphologies, were used for Auger
analysis.

2.3. Tensile Strength Measurement

Room temperature tensile strengths of the individual filaments were measured in ambient atmosphere with an

Instron machine (Model # 4502) at a constant crosshead speed of 1.27 ram/rain (0.05 in./min). A single filament was

mounted on a paper tab with an epoxy. The side portions of the tab were cut with a hot wire just before application of

the load producing a fiber gage length of 2.54 cm (1 in.). The fracture pieces were captured by applying a water based



lubricatingjellytothefiberpriortotestthuscausingthefragmentstostickontissuepaperplacedbehindthetestfiber.
Twentyfilamentsofeachtypeoffiberweretested.SomeoftheHPZfiberswereroundbuthollowandwerenotincluded
instrengthmeasurements.

A largevariationin thefiberdiameterwasobserved,althoughthemanufacturerreportsanaveragevalueof
-10to12ktm.Becauseoftheiroblongshape,themethodasshowninfigure1,wasusedtocalculatethecross-
sectionalareaofthefiberfollowingthetensiletest.AZeissopticalmicroscopeatamagnificationof500Xwasusedto
measureboththemajor(D)andtheminor(d)diametersatoneofthefracturesurfacesofthefiber.Possibly,butmost
likelynot,theprimaryfracturesurfacewasviewedinthemicroscope.Thecross-sectionalsurfaceareawascalculated
fromtheequation:

Fibercross- sectionalarea= AreaA +AreaB+AreaC

= (l/2)n(d/2)2+(D- d)d+(1/2)_(d/2)2

= gdZ/4+(D- d)d

(l)

3. RESULTS AND DISCUSSION

3.1 Electron Microscopic Analysis

3.1.1 HPZ fiber.--SEM micrographs showing the surface and cross-section of as-received, desized HPZ fibers are

given in figures 2 and 3, respectively. The fiber surface is fairly smooth and featureless. The fiber cross-section is oblong

with average major and minor diameters of 14.4 and 8.4 _tm ("D" and "d" in fig. 1), respectively. It should be noted that
the HPZ fibers often crack during the early stages of cross-sectional polishing due to a lack of constraint in the epoxy
mounts. A core and rim structure in the fiber cross-section is also revealed. This is even more apparent in the TEM

micrograph shown in figure 4. The speckled contrast within the rim region is due to under-focussed imaging conditions
used to enhance contrast and is not indicative of the scale of any actual structure. The average thickness of the fiber rim,

which is seen to be microporous, was determined to be -360 nm. Electron micro-diffraction patterns taken from both

the core and rim regions (fig. 4 insets) are diffuse rings indicating an amorphous to nanocrystalline crystal structure. EDS

compositional spectra taken from the core and rim regions are shown in figure 5. The fiber core is rich in Si and N and
contains small amounts of C, O, AI, and CI. The rim is mostly Si and O, but some C, N, and Ai were detected, as well.

3.1.2 HPZ/BN fiber.--An SEM micrograph of a fiber after coating with BN is given as figure 6(a). Cross-sectional

micrographs gave poor contrast, due to the low signal yield from the BN, due to its low atomic weight. The coating can
spall off from the fibers when broken in bending to reveal multiple layers (fig. 6 (b)). The outermost layer of BN was

often quite nodular, as can be seen in figure 6(a) and (b). TEM dark field images of the BN layer revealed a radial structure
not visible in bright field images (fig. 7). Microdiffraction patterns from the BN (fig. 7 inset) showed a turbostratic

structure.

3.1.3 HPZ/BN/SiC fiber.--The nodules in the BN layer remain or, often, are enhanced by the subsequent coating

of SiC (fig. 8). The density of the nodules varies considerably from fiber to fiber, but is more consistent along each
individual fiber. The coated nodules are primarily somewhat less than 1 I.tm in diameter. Sharp contrast is observed

between the fiber core, fiber rim, BN coating, and SiC coating in polished cross-sections (fig. 9). The thickness of the

outer SiC coating varies from fairly uniform to quite variable and granular. The BN coating thickness varies from

approximately 360 to 800 nm between fibers. The SiC coating ranges from about 140 nm to as thick as 5 ktm when a

granular cluster is attached. Within a tow, the fibers on the outside had thicker and more granular coatings than those on
the inside. TEM cross-sections (figs. 10 and 11) reveal the layered structure of the coating. No structural or chemical

changes are observed in the fiber cores and rims. A thin band of relatively featureless material is found at the rim/BN

interface (fig. 10). This band ion mills more quickly during sample preparation than the surrounding material and might
be silica-rich. This region is too narrow to obtain unambiguous crystallographic or compositional information in a

conventional TEM, however. Some slight widening of the band is often seen at the tighter radius regions of the fibers,

but these regions are usually thinned away during preparation. The BN coating often hints of layering and gives

diffraction patterns consistent with a loosely turbostratic structure seen in the as-received fibers. Columnar SiC grains

are seen just outside the BN layer. Electron diffraction patterns (fig. 10 inset) indicate that the SiC is crystalline.

Diffraction patterns taken from the SiC layers were consistent with a mixture of primarily hexagonal polytypes. The
nodular material consists of cores of BN surrounded by columnar SiC (fig. 11 ). EDS spectra taken from the BN layer



andthenodulecoresarequitesimilarasarethespectrafromvarioussectionsof the SiC coating. The inner coating was

relatively rich in detectable C and N and had some O, AI, and Si. It should be noted that boron is not detectable using

the present methods and that some small signals may come from neighboring material. The EDS spectra from the outer

layers were those of SiC.

3.1.4 HPZ/BN/Si3N__ 4. fiber.--The outer coating on these fibers is also quite granular (fig. 12). More flaws in the

smooth underlying Si3-N4-tayer are observed, however. The nodule sizes are very similar to those of the BN/SiC-coated
fibers. Outer coating thicknesses vary more widely than the BN/SiC-coated fibers (fig. 13). The clusters attached to some

fibers nearly double the fiber dimensions. Several flaws in relatively thin Si3N 4 layers were observed (arrow in fig. 13(a)).
The tows showed similar coating quality and thickness variation as in the BN/SiC coated fibers. Fibers towards the

outside of each tow have a thicker and more granular coating than the fibers on the inside. No structural or compositional

changes in the fiber rims and cores were detected in the TEM (fig. 14). A thin band of more easily thinned material at

the rim/BN interface is seen in these fibers as well. Often, the Si3N 4 layer was missing completely (fig. 14(a)). The

transition from orderly to granular coating structures was often indistinct (fig. 14(b)). While the granules consisted of

core and rim structures, the constituents were less distinct crystallographically than the BN/SiC-coated fibers.

Compositionally, the BN inner layers and granule cores yielded EDS spectra essentially identical to those of the BN in

the BN/SiC-coated fibers. The outer layers are relatively rich in Si and N, as would be expected, and contained more CI

than was found elsewhere. The smooth BN layers were loosely turbostratic while the granule cores gave diffraction ring

patterns consistent with nanocrystalline hexagonal BN. The Si3N 4 layers were not distinctly crystalline as seen from the

electron diffraction pattern (fig. 14(b) inset).

3.2. Scanning Auger Analysis

Elemental composition depth profiles, as obtained from scanning Auger analysis, of HPZ fibers and those coated

with BN, BN/SiC, and BN/Si3N 4 are shown in figures 15(a) to (d). The surface of the uncoated HPZ fiber consists of

an SiO2-rich layer having a thickness of-200 nm. The elemental composition (at %) in the bulk of the fiber is -49%Si,
- 11%C, -37%N, and -3 %0. The BN layer in the HPZ/BN fiber is -0.3 _tm thick. It may be somewhat rich in boron and

is contaminated with -10 at % of oxygen and - 3 to 5 at % of carbon. At the fiber/coating interface, there is an SiO2-rich

layer about 200 nm thick. The HPZ/BN/SiC fiber has ~ 150 nm thick layer of Si-rich SiC followed by -400 nm thick layer

of BN. This BN coating appears to be nearly of stoichiometric composition, rather than boron rich, and is much less

contaminated with oxygen than the BN layer in HPZ/BN fiber. This is again followed by ~ 150 nm thick SiO2-rich layer

at the coating/fiber interface. The _N/Si3N 4 fiber has ~300 nm thick layer of Si-rich silicon nitride along with low
level contamination of oxygen. This is followed by -800 nm thick layer of boron-rich BN which is contaminated with

-25 to 30 at % of carbon and -5 at % of oxygen. A SiO2-rich layer, -200 nm thick, is again present at the fiber/coating

interface. The thickness of this SiO2-rich layer, ranging from 0.2 to 1.0 _tm, is reported (ref. 6) to vary from fiber to fiber
and also from batch to batch of the HPZ fibers, and depends on the fiber processing conditions.

3.3. Tensile Strength

The strength of ceramic fibers is determined by the statistical distribution of flaws in the material. The tensile strength
of ceramic fibers is generally analyzed on the basis of the well known Weibull statistics (ref. 7), expressed by the

empirical equation:

Ps=l-P(t_)=exp-V c-is u ¢s0 (2)

where Ps is the survival probability (P(c) = 1 - Ps is the failure probability) of an individual fiber at an applied stress of

_, V is the fiber volume, t_u is the stress below which failure never occurs, t_o is the scale parameter, and m is the shape

or flaw dispersion parameter, m and c o are constant for a given material. Assuming Ou = 0 and uniform fiber diameter
along the length L corresponding to the volume V, eq. (2) can be rearranged as:

In ln(1/P s) = In ln[1/(1 - P(c))] = m In _ + constant (3)

4



Theexperimentaldata can be ranked in ascending order of strength values and the cumulative probability P(ci) can be

assigned as

P(t_i) = i/(l + N) (4)

where i is the rank of the tested fiber in the ranked strength tabulation and N is the total number of fibers tested. A least-

squares linear regression analysis can then be applied to a plot of [lnlnl/P s] vs. In(o). The slope of this analysis is the

Weibull modulus m. The median strength of the fiber, ¢_0.5 (corresponding to Ps = 0.5), depends on its length L and is

expressed by the expression:

in ¢_0.5= -(l/m) In L + constant (5)

According to eq. (5), a plot of In ¢_0.5vs. In L should be linear with a slope of-1/m.

The In In (l/Ps) vs. in a Weibull probability plots for room temperature tensile strength of uncoated HPZ fibers and
those having surface coatings of BN, or BN/SiC are shown in figure 16. Similar Weibull probability plot for BN/Si3N 4

coated HPZ fibers is given in figure 17. Values of Weibull parameters obtained from linear regression analysis for HPZ

fibers with different coatings are given in table I. The average tensile strength of as-received (after sizing removal) HPZ
fiber is 2.0-2_0.56 GPa (290-+81 ksi) and the value of m is 4.1. The manufacturer's information data sheet (ref. 1) reports

values of 1.72 to 2.07 GPa (250 to 300 ksi) for the room temperature tensile strength of these fibers. Similar strength

values of HPZ fibers have also been reported by Takeda et al. (ref. 3). However, Villalobos et al. (ref. 4) report tensile

strengths of 1.5 to 1.8 GPa for two different batches of HPZ fibers where as Moorehead and Kim (ref. 5) give 2.83+0.87

GPa as the room temperature tensile strength of these fibers. The BN-coated fibers showed an increase in average tensile

strength as well as Weibull modulus to 2.39-2-_0.44 GPa (346+64 ksi) and 6.5, respectively. This may be due to the
elimination of fiber surface flaws by the smooth BN coating. The HPZ/BN/SiC fibers showed the same average strength,

2.0-2-_0.32GPa (290-2-_47ksi), as the as-received fibers, but the value of m increased to 7.3. The average tensile strength

of the BN-Si3N 4 coated fibers degraded to 1.15+0.26 GPa (166+38 ksi), yet showed an m value of 5.3. Since the BN
coating on HPZ fibers resulted in an increase in tensile strength, the reduction in strength of the fibers having dual coatings

is probably due to exposure of the BN-coated fibers to high temperatures during chemical vapor deposition of silicon
carbide and silicon nitride or to large flaws in these layers. However, it is difficult to guess the exact temperatures

experienced by these fibers during CVD as the experimental conditions used during coating of the fibers are considered

to be proprietary and were not provided by the vendor. Room temperature tensile strength of the HPZ fibers is known

(ref. 5) to degrade after exposure to temperatures as low as 1000 °C for a few hours in air or argon atmospheres.

4. SUMMARY

Room temperature tensile strengths of as-received HPZ fiber and those surface coated with BN, BN/SiC, or BN/

Si3N 4 by CVD have been measured. The uncoated HPZ fiber showed an average tensile strength of 2.0-2_0.56 GPa
(2905:81 ksi) and the Weibull modulus of 4.1. For the BN coated fibers, the average strength and the Weibull modulus
increased to 2.39+0.44 GPa (3465:64 ksi) and 6.5, respectively. The HPZ/BN/SiC fibers showed an average strength of

2.0!-_0.32 GPa (2905:47 ksi) and Weibull modulus of 7.3. The average strength of fibers having dual BN/Si3N 4 surface

coating degraded to 1.15_+0.26 GPa (166_+38 ksi) with a Weibull modulus of 5.3. Chemical compositions of HPZ fiber

and the surface coatings have been determined using scanning Auger analysis. Scanning electron microscopy and

transmission electron microscopy were used for microstructural analysis of the fibers and the coatings. A microporous

silica-rich layer, -200 nm thick, is present on the HPZ fiber surface. The BN coatings are amorphous to partly turbostratic
and contaminated with carbon and oxygen. Silicon carbide coating was crystalline whereas the silicon nitride coating

was amorphous. Silicon carbide and silicon nitride coatings are non-stoichiometric, nonuniform and flaky. Within a fiber
tow, the fibers on the outside had thicker and more granular coatings than those on the inside.

5. CONCLUSIONS AND FUTURE WORK

It may be concluded that because of low tensile strength of BN/Si3N 4coated HPZ fibers, ceramic matrix composites
reinforced with these fibers will not exhibit high strengths. Barium aluminosilicate glass-ceramic matrix composites



reinforced with uncoated and coated HPZ fibers have been fabricated. Measurement of their mechanical properties at

room and elevated temperatures is in progress. The fiber/matrix interface and the microstructures of these composites

are also being investigated. The results of these findings will be reported in the near future.
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TABLE 1.---WEIBULL PARAMETERS FOR ROOM TEMPERATURE
a

TENSILE STRENGTHS OF UNCOATED AND COATED HPZ FIBERS

Fiber Average strength
coating GPa (ksi)

None 2.0-I-0.56 (290-__81)

BN 2.39-&-0.44(3462-64)

BN-SiC 2.0-L-0.32 (290-&47)

BN-Si3N 4 1.15!-0.26 (166-2:38)

IFor 1 in. test gage length.

WeibuU to 50 percent survival
modulus GPa strength

m GPa (ksi)

4.1 2.21 2.02 (293)

6.5 2.56 2.42 (351)

7.3 2.13 2.03 (294)

5.3 1.25 1.16 (169)
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Figure 1 .--Calculation of cross-sectional area of HPZ
fiber.

Figure 2.---SEM secondary electron micrograph showing surface of desized
HPZ fiber.



Figure3.---SEMbackscatteredelectronmicrographshowingpolishedcross-
sectionofdesizedHPZfiber.

Figure4.toTEMbrightfieldimageofHPZfibercoreandrimincross-section.
Electronmicro-diffractionpatternsfromthecore(left)andrim(right)areinset.
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Figure5.---SEMEDSspectraofHPZfiberpolishedcross-section.(a)Fiber

core.(_Rim.
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Figure6.---SEMsecondaryelectronmicrographofHPZfiberwithBNcoating.
(a)Viewedfromtheside.(b)Showinglayering.
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Figure 7.--TEM dark field image of HPZ fiber with BN coating in cross-section.
Electron micro-diffraction pattern showing turbostratic structure in the BN is inset.

Figure 8.---SEM secondary electron micrograph of HPZ fiber with BN and SiC
coatings viewed from the side.
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Figure 9.---SEM backscattered electron micrograph showing polished cross-
section of HPZ fiber with BN and SiC coatings.

Core

i i
200 nm

Figure 10.--TEM bright field image of HPZ fiber core and rim and BN and SiC

coatings in cross-section. Electron micro-diffraction pattern from the SiC
coating is inset.
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Figure 11 .--TEM bright field image of HPZ fiber with BN and SiC coatings in cross-
section showing nodular core and rim structure.

Figure 12._EM secondary electron micrograph of HPZ fiber with BN and
Si3N 4 coatings viewed from the side.
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Figure 13._EM backscattered electron micrograph of HPZ fiber with BN and
Si3N 4 coatings viewed in polished cross-section. (a) Showing thin coating.
(b) Showing thick, granular coating.
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200 nm

(a)

Figure 14.--TEM bright field image of HPZ fiber with BN and Si3N 4 coatings in cross-
section. (a) Si3N4 coating is missing. (b) Showing nodular core and rim structure;
micro-diffraction pattern from the Si3N4 is inset.
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